EFS[™] Research Packet

Rev. 6, Feb 2014

Corporate Philosophy

Our Mission

Integrate our passion for racing, knowledge of sports nutrition, integrity, and values to provide endurance athletes with the ultimate, scientifically validated, high-performance racing formulations.

Research Philosophy

Research is the most important value at First Endurance. We are driven by a desire to ensure our products are proven to enhance endurance performance and have scientific validation. At First Endurance, we refuse to reduce costs by using "pixie dust" amounts of ingredients just to dress up the label. Our formulations utilize the same levels (sometimes more) of the active ingredients that were used in the actual human scientific research. We assure effective products by using the same ingredients used in the human clinical studies. We are meticulous about research and go out of our way to make sure we have addressed each of our stringent requirements. All products that First Endurance develops are based on human scientific research.

Commitment to Quality

First Endurance uses only the finest ingredients and follows stringent quality control. Supplements can be easily ruined. Even if you buy the right ingredients, they can degrade quickly and lose their efficacy if they aren't handled under the most stringent controls. We are determined to ensure nothing goes wrong with any step of the way. EFS is manufactured under the highest manufacturing guidelines assuring potency and strict quality control.

Certificate of Analysis

A Certificate of Analysis (C of A) is a document which states every active and inactive substance used to manufacture a product. A C of A also shows that there are no additional ingredients added to the EFS formulation.

Product : E3 Lemon-Lime		Lot: 4274AA	
Formula Ingredients	Specification	Formulation Amount	
Ascorbic Acid	Assay NLT 99% (dry basis)	Conforms	
Calcium Carbonate	Assay NLT 99% (dry basis)	Conforms	
Magnesium Oxide	Assay NLT 99% (dry basis)	Conforms	
Sodium Chloride	39% Na+ 61% Cl-	Conforms	
Di-Potassium Phosphate	Assay NLT 99% (dry basis)	Conforms	
-Glutamine	Assay NLT 99% (dry basis)	Conforms	
eucine	Assay NLT 99% (dry basis)	Conforms	
so-Leucine	Assay NLT 99% (dry basis)	Conforms	
/aline	Assay NLT 99% (dry basis)	Conforms	
Net Formula Weight	29g		
Standard Plate Count	<1000cfu/a	Conforms	
Coliform	<100cfu/g	Conforms	
. Coli	<10cfu/g	Conforms	
Staph Aureus	<10cfu/g	Conforms	
Salmonella	negative	Negative	
Said specifications include the requirement that no ac	ve to be manufactured in accordance with the official formulation additional ingredients can be added beyond those described above		
Certified by: The raw material specifications for each ingredient a for the production of this product to ensure confidence	re based on the certification of each supplier. Each supplier has be e with the Official Formulation and Production Specifications.	een carefully selected and approved	
1988 1884 1886 188 <u>4</u>	Oal Fand	11/24/2004	
	Quality Assurance	Date	

Safe and Legal

First Endurance is committed to developing the most advanced endurance supplements on the market. First Endurance has taken additional measures to assure that our products are safe legal and stimulant free. First Endurance supplements are legal to use in any sporting event governed by the World Anti-Doping Association (WADA), the US Anti-Doping Association (USADA) and by the UCI (Union Cycliste International). One or more of the aforementioned governing bodies govern all US Cycling, International Cycling, US Triathlon and International Triathlon and USTF.

Some commonalties among these governing bodies include banned substances which fall into one or more of the following categories as listed in Section I A-E of the UCI Prohibited Classes of substance and Prohibited Methods document. A) Stimulants B) Narcotics C) Anabolic agents D) Diuretics and E) Peptide hormones, mimetics and analogues. This document goes on to list banned substances within each of these classes. Regulations also ban 'Compounds chemically or pharmacologically related to the products mentioned'.

First Endurance products contain NO ingredients which are explicitly listed under the banned substance list, and none of the ingredients are related chemically or pharmacologically. First Endurance has also contacted the USADA and received verbal confirmation that our ingredients are not banned based on their regulations. Note: USADA, WADA and UCI do not offer any certification or written confirmation.

First Endurance manufactures its formulations to the highest GMP (Good Manufacturing Practice) standards available. In addition, a proprietary manufacturing method is used for added safety and assurance.

All ingredients used in First Endurance formulations come from audited suppliers who do not carry, broker or supply any banned substances.

Part XIV Article 7 of the Anti-doping Examination Regulations contains the following warning: riders must refrain from using any substance, foodstuff or drink of which they do not know the composition. It must be emphasized that the composition indicated on a product is not always complete. The product may contain prohibited substances not listed in the composition.

For a complete list of regulations and banned substances please use one of the following links:

UCI Banned Substance List WADA USADA

Typical Supplement Facts for EFS Drink

<u>Use Directions:</u> Mix one scoop EFS per 12 ounces of water. Consume one serving 15-30 minutes before exercise and take one serving every 30 minutes during exercise. EFS can be mixed up to 2x strength for additional calories and electrolytes. A standard water bottle is 18 ounces and requires 1 1/2 scoops.

Supplement Facts Serving Size: 1 scoop (30g) Servings per Container: 25			
Supplement Facts Serving size 1 scoop (30g): makes 12 fluid ounce	es	Amount Per Serving	%DV*
Calories		96	
Calories from fat		0	
Total fat		0 g	0%
Cholesterol		0 g	0%
Total Carbohydrate (Complex carbohydrates, De Sucrose)	xtrose,	24 g	%
Sugars		16g	**
EFS Total Electrolyte Blend (Ca, Mg, Cl, Na, K)	1160mg	*
Calcium (as DiCalcium Malate)	100mg		10%
Magnesium (DiMagnesium Malate)	150mg		38%
Chloride (as sodium chloride)	450mg		10%
Sodium (as sodium chloride)	300mg		15%
Potassium (as di-potassium phosphate)	160mg		6%
Malic Acid (from DiCalcium and DiMagnesium	700mg	*	
AjiPure Amino Acid Blend (L-Glutamine, Leucine, Valine)	ne, Iso-	2000mg	*
*Daily Value Not Established **Percent Daily Values are based on a 2,000 cald	orie diet.		

Ingredients: Complex carbohydrates, sucrose, dextrose, AjiPure Amino Acid Blend (L-Glutamine, Leucine, Iso-Leucine, Valine), Electrolyte blend (chloride, sodium, potassium, magnesium, calcium), citric acid, natural flavors, ascorbic acid.

Typical Supplement Facts for EFS Liquid Shot

Supplement Facts Serving Size: Each flask 5oz (130ml)		
Supplement Facts	Amount Per Serving	%DV*
Calories	400	
Calories from fat	0	
Total fat	0 g	0%
Cholesterol	0 g	0%
Total Carbohydrate (Complex carbohydrates, Dextrose, Sucrose)	100 g	33%
Sugars	50g	**
Calcium (as Calci-K TM calcium complex)	150mg	30%
Magnesium (as Magnachel TM magnesium glycine amino acid chelate)	120mg	50%
Chloride (as sodium chloride)	600mg	13%
Sodium (from sodium chloride)	400mg	12%
Potassium (from calcium potassium phosphate-citrate)	290mg	8%
Amino Acid Blend (L-Glutamine, Leucine, Iso-Leucine, Valine)	2000mg	*
*Daily Value Not Established		_

Ingredients: Complex carbohydrates, dextrose, sucrose, Amino Acid Blend (L-Glutamine, Leucine, Iso-Leucine, Valine), Electrolyte blend (calcium complex, sodium chloride, magnesium oxide), natural flavors, citric acid, potassium sorbate, sodium benzoate.

**Percent Daily Values are based on a 2,000 calorie diet.

Calci- K^{TM} and MagnachelTM are registered trademarks of Albion Laboratories Inc, covered by US Patents

6599544, 6248376, 5516925

^{*}Natural flavors, sweeteners and colors

^{**}No Gums

About EFS

EFS (Electrolyte Fuel System) is a family of products at the forefront of endurance nutrition that combines the latest clinical research with input from elite endurance athletes. Containing an ideal blend of simple and complex carbohydrates, amino acids, antioxidants and electrolytes, EFS products provide endurance athletes the nutrients they need to fuel working muscles and increase endurance during exercise.

Energy = Carbohydrates

Consuming carbohydrates during prolonged exercise enhances performance by supplying energy for muscles to use when glycogen stores begin to drop. EFS products have been specifically formulated to deliver the ideal blend of complex carbohydrates, glucose (dextrose) and sucrose for energy. Clinical research shows a combination of carbohydrates is better than a single source for the absorption and utilization of blood glucose (Guezennec, C.Y, et.al.). EFS products also provide three different high-glycemic sources of carbohydrates for immediate energy and easy digestion during long and intense workouts. The low osmolality of the EFS energy drink and ideal 7% carbohydrate solution provides superior fluid absorption. Clinical research shows that energy drinks mixed within 6-8% offer the optimal absorption of *both* carbohydrates and fluid for endurance racing and training (Shi, K et al.). The biochemical structure of the carbohydrate, the absorption process, the size of the food particle, the degree of processing, the contents and timing of the previous meal, and the co-ingestion of fat, fiber, or protein affect the absorption of a carbohydrate as well as its glycemic index (GI). (Guezennec, 1995).

GI during exercise

Much research has focused on carbohydrate drinks and foods during exercise to slow the depletion of the body's carbohydrate stores and thus delay the onset of fatigue. While the availability of carbohydrate for use within the cells is extremely important, much of the regulation of glucose concentration rests not solely with the type of carbohydrates ingested, but in the hormonal regulation of glucose. Among the hormones that are especially important to glucose concentrations are insulin, glucagon, epinephrine, and cortisol. Exercise-induced elevation in epinephrine depresses the release of insulin from the pancreas. Thus, concerns about carbohydrate feedings increasing insulin and depressing fatty acid availability is less likely to occur when carbohydrate is fed during exercise.

Exercise, in addition to carbohydrate type and timing of ingestion, also modulates the release of these hormones. Exercising at or above threshold can dramatically reduce your body's ability to properly digest foods (due to the pooling of blood to the exercising muscle). During these times, it is best to consume carbohydrates and foods that are easily digested, i.e., those with a high GI.

A recent research study has indicated that during a time trial effort, a carbohydrate drink mouth rinse (not consumption) actually improved performance during a 1-hour cycle TT. The study authors believe the mouth rinse with a carbohydrate drink might have provided the benefit compared to a water-only rinse (Carter, J.M., A.E. et al.).

Conversion

The ability to rapidly replenish carbohydrates after training, and the ability to consume and convert ingested carbohydrates into a usable form of carbohydrate, is important in allowing you to train and compete at your best. Ingestion of the wrong carbohydrates at the wrong time, or ingesting too little carbohydrate can impair performance both in the short term and long term. Consuming a slowly digested carbohydrate during times where the body is at or above threshold can lead to disaster. During times where you exercise or race at and above your threshold, your blood circulation is focused on the working muscles and away from the stomach. This makes digestion of foods difficult. In fact, consuming a slowly absorbed sugar during these times will slow gastric emptying (the emptying of fluids and foods from the stomach to the blood stream) and in essence block fluids from being absorbed. This can actually cause dehydration.

How do sugars differ?

Conventional wisdom says that since all carbohydrates are eventually digested and absorbed as glucose, the original food source of the sugar, whether a bean or a candy bar, matters little. Sugar is sugar and sucrose is sucrose. Not exactly!

Fructose

Fructose has a GI of 20±5 and is a simple sugar (monosaccharide) like glucose and galactose. Natural sources of fructose include honey and fruits. Fructose is 75% sweeter than glucose and is generally found in honey and fruits in addition to its many uses as a food-sweetening additive. It is absorbed more slowly into the bloodstream than straight glucose and sucrose and, therefore, has a less erratic effect on blood sugar levels (at rest). Diabetics or those that are very sensitive to changes in blood sugar find fructose to be advantageous. But, as a result of its slow absorption, beverages that contain fructose can cause gastric upset and slow gastric emptying. Research suggests that fructose is more tolerable when combined with sucrose and glucose. Avoid beverages that list "high fructose corn syrup" as primary ingredients as they will slow fluid uptake and not provide optimal sugars to support exercise energy requirements. As a pre-exercise meal, or between workouts, fructose is an excellent source of carbohydrates.

Galactose

Galactose is a simple sugar that has recently shown up in sports drinks. Lactose is the primary sugar in dairy products and is composed of one molecule of glucose and one of galactose. Because of its galactose content, it is more slowly absorbed into the bloodstream than pure glucose and is therefore more blood-sugar-friendly. The GI of galactose could not be found on any of the official GI lists*, though G-Push (a popular sports drink) does claim that galactose is absorbed quickly like glucose without a subsequent increase in insulin release. This is not confirmed with clinical studies.

Glucose

In terms of immediate use of carbohydrate within the body, glucose (a monosaccharide) with a GI of 99±3 is the most important. Glucose can be directly absorbed by the small intestine and directly transported to the cells to be metabolized. Glucose can also be stored as glycogen (chains of glucose) within muscles and the liver, and can also be converted to fats for energy storage. During exercise, consumption of glucose allows the body to maintain an adequate supply of carbohydrate for metabolism. Glucose is often called dextrose when it is added to foods. The body eventually breaks down all sugars and carbohydrates into glucose, which is the form in which sugar enters cells to be used for energy. During times of exercise at or above threshold, glucose can be easily digested.

Sucrose

With a GI of 68±5 (otherwise known as table sugar), Sucrose is composed of one molecule of glucose and one molecule of fructose. This is the white sugar that comes in many forms, such as powdered or granulated. It is usually made from refining extracts of sugar beets or sugar cane.

Maltodextrin aka Glucose polymers GI=99±3: Lactose GI=46±2 Maltose GI=105±12 Honey GI=55±5 Gatorade® GI=78±13

Energy/Carbohydrate References

Brand Miller, J.C. (1994). Importance of glycemic index in diabetes. Am. J. Clin. Nutr. 59:747S-752S.

Brouns, F., W.H.M. Saris, E.H. Beckers, et al (1989). Metabolic changes induced by sustained exhaustive cycling and diet manipulation. Int. J. Sports Med. 10:549-62.

Burke, L.M., G.R. Collier, S.K. Beasley, P.G. Davis, P.A. Fricker, P. Heeley, K. Walder, and M. Hargreaves (1995). Effect of coingestion of fat and protein with carbohydrate feedings on muscle glycogen storage. J. Appl. Physiol. 78:2187-2192.

Burke, L.M., G.R. Collier, and M. Hargreaves (1993). Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J. Appl. Physiol. 75:1019-1023.

Carter, J.M. A.E. Jeukendrup, and D.A. Jones (2004). The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med. Sci. Sports Exerc. 12: 2107-2111.

Coggan, A.R., and E.E Coyle. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc. Sports Sci. Rev. 19: 1-40, 1991.

Craig, B.W. (1993). The influence of fructose feeding on physical performance. Am. J. Clin. Nutr. 58:815S-819S.

Costill, D.L., W.M. Sherman, W.J. Fink, C.Maresh, M. Witten, and J.M. Miller (1981). The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am. J. Clin. Nutr. 34:1831-1836.

Foster, C., D.L. Costill, and W.J. Fink (1979). Effects of preexercise feedings on endurance performance. Med. Sci. Sports Exerc. 11:1-5.

Foster-Powell, K. and J. Brand Miller (1995). International tables of glycemic index. Am. J. Clin. Nutr. 62:871S-893S.

Flynn, M.G., D.L. Costill, J.A. Hawley, W.J. Fink, P.D. Neufer, R.A. Fielding, and M.D. Sleeper (1987). Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med. Sci. Sports Exerc. 19:37-40.

Goodpaster, B.H., D.L. Costill, W.J. Fink, T.A. Trappe, A.C. Jozsi, R.D. Starling, S.W. Trappe (1996). The effects of pre-exercise starch ingestion on endurance performance. Int. J. Sports Med. 17:366-372.

Guezennec, C. (1995). Oxidation rates, complex carbohydrates and exercise. Sports Med. 19:365-372.

Guezennec, C.Y., P. Satabin, F. Duforez, J Koziet, J.M. Antoine (1993). The role of type and structure of complex carbohydrates response to physical exercise. Int. J. Sports Med. 14:224-231.

Holt, S., J. Brand, C. Soveny, and J. Hansky (1992). Relationship of satiety to postpreprandial glycaemic, insulin and cholescystokinin responses. Appetite 18:129-141.

Horowitz J.F. and E.F. Coyle (1993). Metabolic responses to preexercise meals containing various carbohydrates and fat. Am. J. Clin. Nutr. 58:235-241.

Jenkins, D.J., T.M. Wolever, G.R. Collier, A.Ocana, A.Venketeshwer Rao, G. Buckley, Y.Lam, A.Mayer, and L.U. Thompson (1987). Metabolic effects of a low-glycemic-index diet. Am. J. Clin. Nutr. 46:968-975.

Jozsi, A.C., T.A. Trappe, R.D. Starling, B.Goodpaster, S.W. Trappe, W.J. Fink, D.L. Costill (1996). The influence of starch structure on glycogen resynthesis and subsequent cycling performance. Int. J. Sports Med. 17:373-378.

Kiens, B. A.B. Raven, A.K. Valeur and E.A. Richter (1990). Benefit of dietary simple carbohydrates on the early postexercise muscle glycogen repletion in male athletes (abstract). Med. Sci. Sports Exerc. 22:S88.

Kiens, B., and E.A. Richter (1996). Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am. J. Clin. Nutr. 63:47-53.

Kirwan, J.P., D. O'Gorman, D. Campbell, G. Sporay, and W.J. Evans (1996). A low glycemic meal 45 minutes before exercise improves performance (abstract). Med. Sci. Sports Exerc. 28:S129.

Massicotte, D., F. Peronnet, C. Allah, C. Hillaire-marcel, M. Ledux, G. Brisson. (1986). Metabolic response to [13C]glucose and [13C]fructose ingestion during exercise. J. Appl. Physiol. 61:1180-1184.

Murray, R., G.L. Paul, J.G. Seifert, D.E. Eddy, and G.A. Halaby (1989). The effects of glucose, fructose, and sucrose ingestion during exercise. Med. Sci. Sports Exerc. 21:275-282.

Murray, R., G.L. Paul, J.G. Seifert, and D.E. Eddy. Responses to varying rates of carbohydrate ingestion during exercise. Med. Sci. Sports Exerc

Robergs, R.A. (1991). Nutrition and exercise determinants of postexercise glycogen synthesis. Int. J. Sport Nutr. 1:307-337.

Schenk, S., Davidson, C.J., Zderic, T.W., Byerley, L.O., & Coyle, E.F. (2003). Different glycemic indexes of breakfast cereals are not due to glucose entry into the blood but to glucose removal by the tissue. American Journal of Clinical Nutrition, 78, 742-748.

Sherman, W.M. (1991). Carbohydrate feedings before and after exercise. In: D.R. Lamb and M.H. Williams (eds.) Perspectives in Exercise Science and Sports Medicine, Vol. 4: Ergogenics: Enhancement of Performance in Exercise and Sport. Indianapolis: Benchmark Press, pp. 1-34.

Thomas, D.E., J.R. Brotherhood and J.C. Brand (1991). Carbohydrate feeding before exercise: effect of glycemic index. Int. J. Sports Med. 112:180-186.

Thomas, D.E., J.R. Brotherhood and J.Brand Miller (1994). Plasma glucose levels after prolonged strenuous exercise correlate inversely with glycemic response to food consumed before exercise. Int. J. Sport Nutr. 4:361-373.

Walberg-Rankin, J. (1995). Dietary carbohydrate as an ergogenic aid for prolonged and brief competitions in sport. Int. J. Sport Nutr. 5 (suppl.):513-528.

Zawadzki, K.M., B.B. Yaspelkis, and J.L. Ivy (1992). Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J.Appl. Physiol. 72:1854-1859.

*Glycemic Index scores: http://diabetes.about.com/library/mendosagi/ngilists.htm

Electrolytes

Electrolytes, the mineral salts that conduct the electrical energy of the body, perform a cellular balancing act by allowing nutrients into the cell, while excreting waste products. Certain elements, sodium, chloride, magnesium, calcium and potassium, play a primary role in cellular respiration – that of muscle contraction and nerve impulse transmission. It is at the cell membrane where these electrolytes conduct electrical currents similar to nerve impulses. Hydration is the medium which aids electrolyte transport and is crucial for both the health and performance of the cell. Your hydration state is mostly dependent upon water intake or loss through sweat but is also heavily influenced by electrolyte status.

Sweat

Endurance performance is compromised greater by warmer temperatures than cooler temperatures. Here's why: to control an excessive rise in body temperature, the blood flow to the skin increases in order to dissipate heat to the environment. This shift of blood to the skin will result in a lesser proportion of blood, and hence oxygen, being delivered to the working muscle. In some individuals the circulatory adjustments may not be adequate and the body temperature will rise rapidly, leading to hyperthermia (excessive body heat). Individual sweat rates vary, but those that sweat early, heavily, and cake with salt tend to be more prone to muscle cramps during exercise (Burke, 2001). Evaporation of sweat in a hot environment can purge as much as 3 liters an hour. Alberto Salazar reportedly lost an average of 3.7 liters per hour of sweat during the hot and humid 1984 Olympic Marathon in LA (Armstrong et al. 1986). About 99% of sweat is water, with a number of major electrolytes found in varying amounts. Since sweat is derived from the extracellular fluid (fluid outside the cell) the major electrolytes found are sodium and chloride. The concentration of salt in sweat is variable, but averages about 2.6 grams per liter of sweat loss. Potassium,

magnesium, calcium, iron, copper, zinc, amino acids and some of the water-soluble vitamins can also be found in sweat.

Too much water?

Hyponatremia is defined as a decrease in sodium concentration in the blood, which can have adverse effects on muscle contraction and performance. One study observed 27% of participants following a three-day cycling stage race competition were hyponatremic. Symptoms of hyponatremia include headache, nausea, muscle cramping, fatigue, and possibly death. Although there may be many causes of hyponatremia, the most common one for athletes is over-hydration. Athletes tend to super-hydrate in the days leading up to a race without an appropriate increase in electrolytes. In some cases, super-hydrating can produce hyponatremia prior to the race ever starting. However, drinking only water during a race can also causes hyponatremic conditions because the body requires electrolytes to effectively maintain hydration status. Hyponatremia, rare in events lasting less than 4 hours, has been shown in recent medical studies of slower marathon runners and ultra-distance triathletes to be at least as problematic and dangerous – if not more so – than dehydration.

Sodium and Chloride

Sodium is one of the principle positive ions in the body's fluid and is found primarily outside the cell (extracellular). Chloride, another extracellular electrolyte, is a negative ion and works closely with sodium in the regulation of body-water balance and electrical impulses across the cell membrane. Consuming adequate amounts of sodium and chloride, more commonly known as table salt, is crucial to maintaining the volume and balance of fluids outside your body's cells and in your blood. Sodium is especially important because it plays a key role in transporting nutrients into cells to be used for energy production, tissue growth, and repair. Sodium also assists in muscle contraction and nerve impulse transmissions. During exercise, your body loses fluids and sodium through sweating. This causes a decrease in your blood volume, thereby increasing sodium and chloride concentrations in the blood. The increased concentration of electrolytes in the blood through decreased blood volume is what triggers the thirst mechanism. By the time you have become thirsty your electrolytes are already out of balance, so restoration of blood volume is critical for the prevention of dehydration. While water consumption is effective in increasing your blood volume, there is a consequential dilution of sodium in your blood due to the increased blood volume and excessive sodium losses in sweat so electrolyte replenishment is critical. Drinking fluids with added electrolytes instead of just plain water is the best option, particularly when your exercise bout lasts longer than one hour and is in a hot or humid environment.

Potassium

Potassium is the main electrolyte found inside the body's cells (intracellular) and stored in muscle fibers along with glycogen. It plays a key role by helping transport glucose into the muscle cell. Potassium also interacts with both sodium and chloride to control fluid and electrolyte balance and assists in the conduction of nerve impulses. When glycogen breaks down to supply energy for your workouts, muscle cells are depleted of potassium. As a result, there is a greater concentration of potassium in your blood and greater quantities are lost in the urine. Symptoms of potassium depletion include nausea, slower reflexes, irregular heartbeat, drowsiness, and muscle fatigue and weakness. Although potassium deficiencies are rare, they may occur under certain conditions -- during fasting, diarrhea and when using diuretics. Replenishing lost potassium after exercise is important, but hyperkalemia (high serum potassium levels) can cause electrical impulse disturbance, irregular heart beat, and possibly death. Individuals should never take potassium supplements in large doses without the advice of a physician.

Calcium

Calcium is an electrolyte that may be overlooked. The skeleton is the major reservoir of calcium in the human body. Besides building teeth and bones, calcium is needed by many other cells to perform different functions in the body: contraction and relaxation of muscle, nerve conduction, secretion of hormones, enzymatic reactions, and blood coagulation. Calcium plays a central role in both the synthesis and breakdown of muscle glycogen and liver glycogen. Blood calcium levels are tightly regulated by hormones at the expense of bones. Many do not realize that bones are constantly being broken down and rebuilt through the processes of resorption and formation.

The National Academy of Sciences recommends the following calcium intake levels for different age groups:

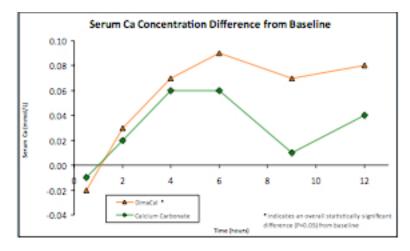
500mg for 1-3year olds

800mg for 4-8 year olds

1,300mg for those aged 9-18

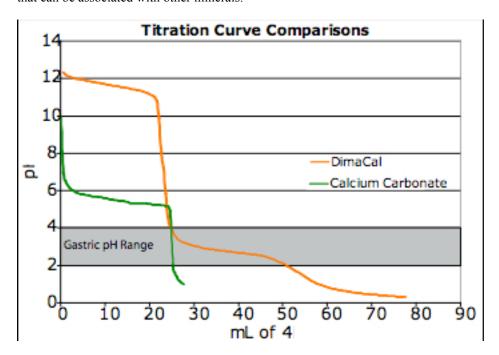
1,000mg for ages 19-50 years

1,200mg for those over 50 years of age


Endurance athletes may require even greater levels. Dairy products like milk, cheese and yogurt are excellent sources of dietary calcium because they are also fortified with vitamin D which is necessary for optimal absorption of calcium into the body. Low serum levels of calcium can cause a number of problems, including muscular cramping due to an imbalance of calcium in the muscle and surrounding fluids. Muscular contraction and exercise performance in active individuals is also compromised with low serum calcium. In addition to calcium intake, athletes should be aware that weight-bearing exercise is beneficial the maintenance of a healthy skeleton. Non-weight bearing sports like bicycling and swimming have been associated with bone mass similar to or below that of normal sedentary people (Duncan, 2002; Heinonan, 1993; Warner, 2002; Taaffe, 1995 & 1999). So, remember to fit in some weight-bearing exercise and consume varied sources on calcium in your diet!


Magnesium

Magnesium is an element found in every cell in your body, with the largest concentrations found in the bones, muscles, and soft tissues. Magnesium forms part of 300+ enzymes involved in nerve impulse transmission, muscle contraction, and ATP (or energy) production. Increased levels of exercise deplete your body's stores of magnesium so it is crucial to replenish what you have lost. Investigators suggest that prolonged exercise increases the loss of magnesium from the body via urine and sweat. Signs of magnesium depletion include dizziness, muscle weakness, fatigue, irritability, and depression.

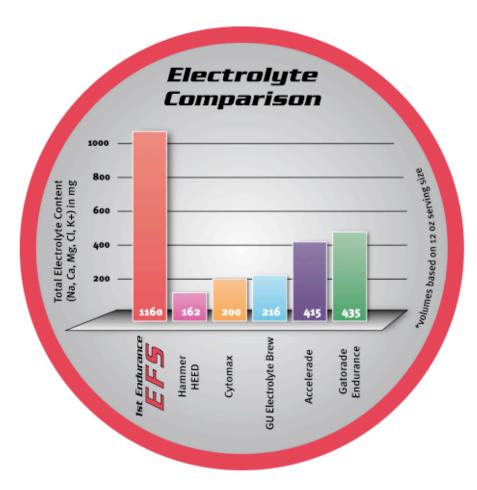

Patented sources of calcium and magnesium in EFS drink formula

The EFS drink formula uses two unique patented sources of calcium and magnesium as amino acid malates. DiCalcium malate and DiMagnesium malate have superior bioavailability over other calcium sources. DiCalcium malate in a bioavailability study proved to be absorbed significantly better and remained elevated from time 0 to 12 hours, representing a more absorbable form for a longer period. Absorption rates were between 20% and 100% higher using DiCalcium and DiMagnesium malate.

Furthermore, these superior minerals also offer a buffering of stomach acids. DiCalcium malate and DiMagnesium malate lower stomach acids significantly, helping to reduce the unwanted gastric distress that can be associated with other minerals.

Electrolyte Chart

	Extracellular (mmol/L)	Sweat (mmol/L)	Intracellular (mmol/L)
Sodium	137-144	20-80	10
Potassium	3.5-4.9	4.0-8.0	148
Calcium	4.4-5.2	3.0-4.0	0-2.0
Magnesium	1.5-2.1	1.0-4.0	30-40
Chloride	100-108	30-70	2


From Maughan and Shirreffs, 1998. Fluid and electrolyte loss and replacement in exercise. In Oxford textbook of sports medicine, 2nd Edition. Edited by Harris, Williams, Stanish, and Micheli. New York: Oxford University Press, pp. 97-113.

Fluid and electrolyte needs for endurance athletes

Endurance athletes have different fluid and electrolyte needs, particularly during longer and higher intensity training sessions and competition. The increased loss of sweat translates into an increased loss of electrolytes, and, as previously mentioned, sodium is one of the important electrolytes that must be replaced during exercise to prevent dehydration and hyponatremia. The composition of standard sport drinks may not provide an adequate amount of electrolytes during activity lasting longer than two hours. Most standard sports drinks contain 50- 110 mg (200-460 mg/liter) of sodium per 8 oz. Because we are limited on the amount of fluid the body can absorb by the intestines, it may be important to consume a higher amount of sodium during exercise to minimize fluid loss. The body can tolerate a higher sodium intake (closer to the amount lost in sweat) and it does not appear to negatively affect carbohydrate absorption.

Comparison of the Electrolyte Content between Standard Sport Drinks and Endurance Specific Sport Drinks

Electrolyte	Sweat Loss mg/L	Standard Sport Drink mg/L	Endurance Specific Sport Drink mg/L
Sodium	900-2600	200-450	800-1110
Potassium	100-200	80-125	390-650
Magnesium	60-260	0	10-615
Chloride	900-1900	0	390-1550
Calcium	50-100	0	250-500

Electrolyte References

Askew, E. 1994. Nutrition and performance at environmental extremes. In *Nutrition in Exercise and Sport, eds.* I Wolinsky and J. Hickson. Boca Raton, FL: CRC press.

Bronner, F., 1999. "Calcium in exercise and sport." In Macroelements, Water, and Electrolytes. Eds. Driskell, J.A., and Wolinsky, J.A. CRC Press, 17-27.

Brouns, F., et al. 1992 Rationale for upper limits of electrolyte replacement during exercise. *International Journal of Sport Nutrition* 2:229-38

Brouns, F., et al.: Eating, drinking and cycling. A controlled Tour de France simulation study, Part I. Int. J. Sports Med., 10:532, 1989

Brouns, F., et al.: Eating, drinking and cycling. A controlled Tour de France simulation study, Part II. Effect of diet manipulation. *Int. J. Sports Med.*, 10:532, 1989.

Duncan CS, Blimkie CJ, Cowell CT, Burke ST, Briody JN, Howman-Giles R. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc. 2002 Feb;34 (2):286-94.

Fortney, S., and Vroman, N. 1985. Exercise, performance and temperature control: Temperature regulation during exercise and implications for sports performance and training. *Sports Medicine* 2:8-20.

Gisolfi, C., and Duchman, S. 1992. Guidelines for optimal replacement beverages for different athletic events. *Medicine and Science in Sports and Exercise* 24: 679-87.

Heinonen A, Oja P, Kannus P, Sievanen H, Manttari A, Vuori I. Bone mineral density of female athletes in different sports. Bone Miner. 1993 Oct; 23(1):1-14.

Maughan and Shirreffs, 1998. Fluid and electrolyte loss and replacement in exercise. In *Oxford textbook of sports medicine*, 2nd Edition. Eited by Harris, Williams, Stanish, and Micheli. New York: Oxford University Press, pp. 97-113

Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res. 1995 Apr; 10(4):586-93.

Taaffe DR, Marcus R. Regional and total body bone mineral density in elite collegiate male swimmers. J Sports Med Phys Fitness. 1999 Jun; 39(2):154-9.

Warner SE, Shaw JM, Dalsky GP. Bone mineral density of competitive male mountain and road cyclists. Bone. 2002 Jan; 30(1):281-6

Endurance: Free Form Amino Acids

Free Form Amino Acids vs Protein

New research done in 2003 and 2004 indicates that supplementing with protein during exercise improves time to exhaustion (Ivy, J.L. et al, Saunders, M.J. et al) and reduces post exercise muscle damage (Saunders 2004). In these two protein studies, the study authors were unable to explain why time to exhaustion increased. They postulated that the reason was due to a greater sparing of muscle glycogen, which would provide a greater reserve during exercise. However, the insulin responses to the carbohydrate and carbohydrate/protein supplements were not different. In addition, carbohydrate oxidation was similar in both groups, which would suggest that the utilization of muscle glycogen was also similar. Scientists are left to hypothesize that another mechanism may be involved in producing enhanced performance.

- 1. Central fatigue hypothesis. During exercise, branched chain amino acids (BCAAs) decrease and tryptophan, a precursor to serotonin, competes with BCAAs. Essentially, tryptophan overpowers the BCAAs and crosses the blood brain barrier rather than BCAAs. It also increases serotonin in the brain and lowers brain activity and possibly causes central body fatigue. Some studies show that the addition of BCAAs during exercise will improve endurance exercise performance while others do not and a definitive consensus has not been reached regarding this topic.
- 2. Maintain Krebs Cycle intermediates. This is a relatively new hypothesis in this area. The authors speculated that the addition of protein during exercise could provide precursors for the reactions required to maintain the Krebs Cycle (this is one of the metabolic cycles that is responsible for making energy to supply the muscles during exercise). As exercise duration increases, the precursors, specifically 2-oxoglutarate and oxaloacetate, for the Krebs Cycle reactions decrease to critically low levels and therefore decrease energy production. Although carbohydrate supplementation is thought to assist this process somewhat, it may not be as efficient as once thought when the proper amino acids are provided.

While the claims for improved performance can be clearly supported, it may be a misleading generalization that protein is the reason for the benefit. Protein naturally contains BCAAs and glutamine. Clinical evidence supporting the use of BCAAs and glutamine during exercise dates back to 1991. These clinical studies clearly indicate supplementing with as little as one gram of free form amino acids improved performance, reduced post-exercise muscle damage, improved muscle glycogen re-synthesis, reduced central fatigue and improved rate of perceived exertion. These are the same claims made by the most recent protein study and clearly support a mechanism for improved performance.

Glutamine

Glutamine is the most abundant amino acid in the body, accounting for greater than 60% of the total intramuscular free amino acid pool. Virtually every cell in the body uses this non-essential amino acid. Glutamine is synthesized in both skeletal muscle and in adipose tissue in addition to the lungs, liver and brain. Because the body has the ability to produce glutamine it has long been considered a non-essential amino acid, which simply means the body has a mechanism to produce this powerful amino acid. However, there is evidence that, during times of stress, the body cannot produce enough glutamine to keep up with demand which in turn can reduce performance, immune function and mood. As a result, glutamine has recently been classified as a conditional non-essential amino acid. Glutamine offers a significant benefit to exercising individuals and those looking to increase lean muscle mass and decrease body fat. Supplemental glutamine can help promote cell volumization, the phenomenon of drawing of water *inside* muscle cells which can help increase muscle "fullness", increase protein synthesis (the making of proteins), and decrease proteolysis (the breakdown of protein).

Glutamine and overtraining

Intense physical exercise drains glutamine stores faster than the body can replenish them. When this occurs, the body breaks down muscles and becomes catabolic. Clinical evidence supports supplementation with glutamine for recovery, glycogen storage & transport, synthesis of other amino acids and to reduce the catabolic effects of overtraining. It has been proven that glutamine levels in the serum are dramatically reduced following exhaustive exercise. With reduced glutamine levels, performance and recovery are also compromised.

Conditions of severe stress such as exposure to extreme altitude, massive trauma, and burns have been shown to decrease glutamine concentrations similar to the reductions noted in endurance athletes after training and competition. Supplementation with glutamine has been shown to improve recovery rates in these patients, and has also been linked to improved gastrointestinal function. The evidence for maintenance of healthy immune function is one more great benefit to glutamine supplementation. A strict and strenuous training program, which does not allow for enough time to recover, may cause an athlete to experience overtraining syndrome (OTS). Researchers have effectively correlated OTS to amino acid imbalances. Decreased performance, decreased mood, and increased incidence of infections characterize these amino acid imbalances caused by OTS.

Significantly decreased plasma glutamine concentrations have been observed after prolonged exercise in healthy athletes as well. Athletes who exercise extensively and are suffering from OTS may become immuno-suppressed leading to infection and increased upper respiratory tract infections (URTI). Supplementing with glutamine in order to maintain normal levels of intramuscular glutamine is critical in maintaining a strong immune system AND preventing the breakdown of skeletal muscle and catabolism (the breakdown of muscle).

Supplementation vs. Foods

Most naturally occurring food proteins contain only 4 to 8% of their amino acid as glutamine. Though glutamine is available in small quantities from a variety of foods, it is easily destroyed by cooking. Raw vegetables can be a good source of glutamine though evidence suggests that dietary glutamine is not easily absorbed through the intestine. On the contrary a stable form of glutamine from dietary supplements has a better absorption rate.

Branched Chain Amino Acids (BCAAs)

Low levels of branched chain amino acids (BCAAs) may contribute to fatigue so BCAAs should be replaced within two hours or less following exercise. These include the essential amino acids leucine, isoleucine, and valine. They are very popular among athletes and there is some research validating their use. Numerous research studies have shown these three key amino acids are extremely important to consume, especially during dieting and exercising (and according to one study, BCAAs are even more important when exercising in the heat). During exercise, the body uses a mix of glucose, fats, and even protein as a fuel source. When diet and carbohydrate intake is lower than normal, the percentage of protein

the body uses for fuel (specifically Leucine, Isoleucine, and Valine) dramatically increases. The body will pull those needed amino acids from the continuously circulating pool of amino acids in the bloodstream. And if not replenished from an outside source, i.e. specific amino acid ingestion in the form of BCAAs, the body will breakdown in other areas in order to supply this pool. Studies have shown that subjects who consume an effective dose of BCAAs while endurance training have greater levels of lean muscle mass retention than control subjects who ingest a placebo (and typically *lose* muscle during the same dieting period). Additionally, BCAAs form antibodies that combat invading bacteria and viruses. The body cannot manufacture its own BCAAs, so they must be supplied through diet and supplementation. BCAAs have also been studied for their ability to improve exercise capacity in heat. In a 1998 study, subjects supplementing with BCAAs significantly improved moderate exercise performance in the heat.

BCAAs and Central Fatigue

Branched Chain Amino Acids are also associated with a syndrome termed *central fatigue*. Following exhaustive exercise, BCAAs are depleted from the working muscle and from the circulating pool of amino acids. This depleted state causes an imbalanced ratio of BCAA to tryptophan (another amino acid). When BCAAs are low, tryptophan (a precursor to serotonin, which results in lethargy) is more readily available and can cause increases in serotonin. It is this imbalance that can cause an athlete to become lethargic and almost sleepy. Supplementing with higher levels of BCAAs will help stop the tryptophan/serotonin mechanism. All whey protein supplements contain tryptophan, however only some will actually disclose an amount on the label. An effective supplement should contain at least three grams of BCAAs and minimal levels of tryptophan.

A 2006 Study conducted in Tokyo discussed the beneficial effects of a dietary amino acid supplement on muscle function, fatigue and recovery in exercising athletes. The mixture of amino acids included the branched-chain amino acids, arginine and glutamine and was studied chronically at several daily dose levels for 10, 30 and 90 days. At dose of 2.2, 4.4 and 6.6 g/day for one month showed indices of blood oxygen carrying capacity were increased and those of muscle damage were decreased at the end of the trial. The study suggests that amino acid supplementation contributed to an improvement in training efficiency through positive effects on muscle integrity and hematopoiesis.

Why EFS?

EFS drinks are fortified with 2,000 mg amino acids per serving and are now upgraded to include AjiPure amino acids, the purest, most bioavailable source of free form amino acids available. AjiPure amino acids have purity levels of 99%-100% corresponding to faster and more complete absorption. After five minutes, 100% of AjiPure amino acids were released compared to only 46% from other amino acids.

Amino Acid References

Antonio, J., and C. Street. 1999. Glutamine: A potentially useful supplement for athletes. Canadian Journal of Applied Physiology 24:1-14

Blomstrand E, Celsing F, Newsholme EA. Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand. 1988 May;133(1):115-21.

Blomstrand E, Hassmen P, Ek S, Ekblom B, Newsholme EA. Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol Scand. 1997 Jan;159(1):41-9.

Blomstrand E, Hassmen P, Ekblom B, Newsholme EA. Administration of branched-chain amino acids during sustained exercise-effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol. 1991;63(2):83-8.

Castell LM, Yamamoto T, Phoenix J, Newsholme EA. The role of tryptophan in fatigue in different conditions of stress. Adv Exp Med Biol. 1999;467:697-704.

Castell L. Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med. 2003;33(5):323-45

Castell, L.M., et al. The role of glutamine in the immune system and in intestinal function in catabolic states. Amino Acids 7 (1994): 231-243

Castell, L.M., J.R. Poortmans, and E.A. Newsholme. Does glutamine have a role in reducing infection in athletes? European Journal of Applied Physiology 73 (1996): 488-490.

Davis JM, Alderson NL, Welsh RS. Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr. 2000 Aug;72(2 Suppl):573S-8S.

Davis JM, Bailey SP, Woods JA, Galiano FJ, Hamilton MT, Bartoli WP. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol. 1992;65(6):513-9.

Davis JM, Welsh RS, De Volve KL, Alderson NA. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int J Sports Med. 1999 Jul;20(5):309-14.

Davis JM. Carbohydrates, branched-chain amino acids, and endurance: the central fatigue hypothesis. Int J Sport Nutr. 1995 Jun;5 Suppl:S29-38.

Davis JM. Central and peripheral factors in fatigue. J Sports Sci. 1995 Summer;13 Spec No:S49-53.

Gastmann UA, Lehmann MJ. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc. 1998 Jul;30(7):1173-8.

Hassmen P, Blomstrand E, Ekblom B, Newsholme EA. Branched-chain amino acid supplementation during 30-km competitive run: mood and cognitive performance. Nutrition. 1994 Sep-Oct;10(5):405-10.

Ivy, J.L. et al. (2003). Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. *International Journal of Sport Nutrition and Exercise Metabolism, 13,* 388-401.

Kreider, R., Miriel, V., and Bertun, E., 1993. "Amino acid supplementation and exercise performance." Sports Medicine, 16:190-209.

Lehmann M, Huonker M, Dimeo F, Heinz N, Gastmann U, Treis N, Steinacker JM, Keul J, Kajewski R, Haussinger D. Serum amino acid concentrations in nine athletes before and after the 1993 Colmar ultra triathlon. Int J Sports Med. 1995 Apr;16(3):155-9.

Lehmann M, Mann H, Gastmann U, Keul J, Vetter D, Steinacker JM, Haussinger D. Unaccustomed high-mileage vs intensity training-related changes in performance and serum amino acid levels. Int J Sports Med. 1996 Apr;17(3):187-92.

Masaru Ohtani, et al. Amino Acid mixture improves Training Efficiency in Athletes. Journal of Nutrition 136: 538S-543S, 2006.

Manner T, Wiese S, Katz DP, Skeie B, Askanazi J. Branched-chain amino acids and respiration. Nutrition. 1992 Sep-Oct;8(5):311-5.

Meeusen R, De Meirleir K. Exercise and brain neurotransmission. Sports Med. 1995 Sep;20(3):160-88.

Mittleman KD, Ricci MR, Bailey SP. Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc. 1998 Jan;30(1):83-91.

Newsholme EA, Blomstrand E. Tryptophan, 5-hydroxytryptamine and a possible explanation for central fatigue. Adv Exp Med Biol. 1995;384:315-20.

Raguso, C.A., Pereira, P., Young, V.R., 1999. "A tracer investigation of obligatory oxidative amino acid losses in healthy young adults." American Journal of Clinical Nutrition, October, 70(4):474-483.

Saunders, MJ et al. (2004). Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. *Med. Sci. Sports Exerc.*, Vol. 36, No. 7, 2004.

Schena, F., Guerrini, F., Tregnaghi, P., and Kayser, B., 1992. "Branched-chain amino acid supplementation during trekking at high altitude." European Journal of Applied Physiology, 65:394-398.

Struder HK, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K. Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horm Metab Res. 1998 Apr;30(4):188-94.

Tanaka H, West KA, Duncan GE, Bassett DR Jr. Changes in plasma tryptophan/branched chain amino acid ratio in responses to training volume variation. Int J Sports Med. 1997 May;18(4):270-5.

Verger P, Aymard P, Cynobert L, Anton G, Luigi R. Effects of administration of branched-chain amino acids vs. glucose during acute exercise in the rat. Physiol Behav. 1994 Mar;55(3):523-6.

Wagenmakers AJ. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev. 1998;26:287-314.

Yamamoto T, Castell LM, Botella J, Powell H, Hall GM, Young A, Newsholme EA. Changes in the albumin binding of tryptophan during postoperative recovery: a possible link with central fatigue? Brain Res Bull. 1997;43(1):43-6.

Yamamoto T, Newsholme EA. Diminished central fatigue by inhibition of the L-system transporter for the uptake of tryptophan. Brain Res Bull. 2000 May 1;52(1):35-8.

Malic Acid

Malic acid is the only metabolite of the Krebs Cycle which falls in concentration during exhaustive physical activity. Malic acid is involved in the production of energy in the body under both aerobic and anaerobic conditions. During anaerobic conditions, malic acid has an ability to remove the accumulation of reducing equivalents. Human studies have shown that after endurance training, athletes' muscles were characterized by a 50% increase in the malate-aspartate redox shuttle enzymes. In both animals and humans, when there is an increased demand for ATP there is an additional demand and utilization of malic acid. Malic acid stimulates oxygen consumption by increasing mitochondrial uptake of other substrates. It also stimulates the removal of components that build up under hypoxic conditions and inhibit ATP production (Wu J et al 2006).

Malic Acid References

Bobyleva-Guarriero V, Wehbie R, Lardy H. The Role of Malate in Hormone-Induced Enhancement of Mitochondrial Respiration. Archives of Biochemistry and Biophysics (1986) Vol. 245, No. 2, March: 477-482

Bobyleva-Guarriero V, Lardy H. The Role of Malate in Exercise-Induced Enhancement of Mitochondrial Respiration. Archives of Biochemistry and Biophysics (1986) Vol. 245, No. 2, March: 470-476

Dunaev V, Tishkin N, Milonova N, Belay A, Makarenko S. Farmakol Toksikol Effect of Malic Acid Salts on Physical Working Capacity and its Restoration After Exhausting Muscular Work. (1988) May-Jun; 51(3):21-25

Wu J et al. Effects of L-Malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice. Physiology Res. 2006 Mar 23.

EFS Q&A

Q: What is EFS?

A: EFS is a new energy drink that provides endurance athletes with the nutrients they need to fuel working muscles and increase endurance during exercise. The EFS formula utilizes the latest clinical research on endurance nutrition and input from some of the best endurance athletes in the world.

O: What electrolyte upgrades can we find in the new EFS?

A: There are now 300mg of sodium per serving in the new EFS drink (previous formula had 270mg). This represents the highest sodium content in any electrolyte drink on the market. The EFS formula now offers over 1,160mg of electrolytes coming from all 5 electrolytes, per serving.

Furthermore these superior minerals also offer a buffering of stomach acids. DiCalcium and DiMagnesium malate lower stomach acids significantly helping to reduce the unwanted gastric distress that can be associated with other minerals.

Q: Are there any changes to the amino acids?

A: The amino acids in the EFS drinks are AjiPure amino acids, the purest, most-bioavailable source of free-form amino acids available. AjiPure amino acids have purity levels of 99%-100%. This results in faster and more complete absorption.

Q: The new EFS drinks now have malic acid. Why is this important?

A: The new EFS drink contains 700mg of malic acid, which was not found in the previous formula. Malic acid stimulates oxygen consumption by increasing mitochondrial uptake, improving mitochondrial respiration and increasing energy production. Malic acid is essential in the formation of ATP, the body's energy source. Malic acid allows the body to make ATP more efficiently, even under low oxygen, or hypoxic conditions.

During anaerobic conditions, malic acid has an ability to remove the accumulation of reducing equivalents. Human studies have shown that after endurance training, athletes' muscles were characterized by a 50% increase in the malate-aspartate redox shuttle enzymes.

Q: Did the flavors change?

A: Yes, the new formulas went through extensive flavor testing in the most demanding races in the world. Our pro athletes tested the new formulas during the Tour de France, Ironman Hawaii and various other cycling, triathlon and running races. We used this extensive feedback to create all new low sweetness, mild flavors that are very palatable during a wide variety of environmental conditions. The new EFS formulas are all free of any artificial sweeteners, colors and flavors. All formulas use 100% natural flavors and contain NO color. This allows athletes to use EFS not having to worry about staining water bottles. The new flavors, especially the Grape and Orange do well up to two times the recommended concentration.

Q: I've heard that there are benefits to having protein during exercise. Why doesn't EFS contain protein?

A: EFS contains 2g free form amino acids per serving which is the equivalent in BCAA and glutamine profile to 9g whey protein. Protein naturally contains BCAAs and glutamine. Clinical evidence supporting the use of BCAAs and glutamine during exercise dates back to 1991. These clinical studies clearly indicate supplementing with as little as 1g free form amino acids improved performance, reduced post-exercise muscle damage, improved muscle glycogen resynthesis, reduced central fatigue and improved rate of perceived exertion. These are the same claims made by the most recent protein study and clearly support a mechanism for improved performance.

The First Endurance Research Board sides with the abundance of clinical studies supporting improved endurance performance while supplementing with amino acids during exercise. In addition to the clinical support, other factors lead to a decision to use these free form amino acids over complete proteins.

- Proteins are more difficult to digest than amino acids during exercise
- Proteins don't taste very good during exercise
- Proteins can reduce the glycemic index of a drink, further reducing its ability to be quickly absorbed
- There is considerably more evidence supporting free form amino acids than complete proteins

Q: What are the benefits of using EFS during exercise?

A: The benefits of EFS are:

- Supplying fast and sustained energy for muscles
- Improved fluid absorption
- Reduced cramping and dehydration
- Improved performance
- Easy to digest and absorb
- Improved glycogen resynthesis
- Delayed central (mental) fatigue
- Replenishment of electrolyte loss

O: How does it taste?

A: EFS is a light, great-tasting energy drink that's sweetened and flavored with 100% natural ingredients. Because EFS is low in sweetness, there is no need to dilute the recommended serving allowing you to drink

it full strength. Unlike energy drinks that contain complete proteins, EFS is not chalky and thick. The benefit is a potent, easy to digest energy drink which delivers all the nutrients as they were intended (full strength). EFS is available in four refreshing flavors: Lemon-Lime, Fruit Punch, Mild Grape, and Orange Splash.

Q: How much EFS should I use during my training and racing?

A: Clinical research shows that a 6-8% solution delivering between 45-60g carbohydrates, >1000mg amino acids, 400-600mg sodium and equivalent balance in all electrolytes should be taken every hour during exercise. EFS is designed to maximize all these levels. Athletes should consume one serving for every 30 minutes of intense exercise. Adjustments should be made based on body weight, training state, 17 heat, individual sweat rates and preference. Use one serving for every 30 minutes as a starting point and adjust as necessary from there. Additional calories and electrolytes can be added through the EFS liquid shot or EFS bars.

Q: What types of athletes should be taking EFS?

- A: The following symptoms will all benefit from use of EFS
- 1) Athletes who experience cramping from strenuous exercise.
- 2) All athletes who demand rapid fluid absorption in order to stay hydrated.
- 3) Athletes who want all the benefits of protein without the heavy/chalky consistency of protein drinks. Essentially any athlete exercising for one hour or more will benefit from the use of EFS in their training and racing.

Q: Should I use EFS even when it's cold, like during XC ski races?

A: Cold weather sports still put a considerable fluid and electrolyte demand on the athlete. EFS works just as well in the cold as is the heat. The high sodium content in EFS may even help reduce the drinks propensity to freeze, although this has not been tested.

Q: Should I use EFS in short races?

A: Short races generally don't put a heavy demand on your glycogen carbohydrate stores, given that you are well nourished prior to the start of the race. During a short race athletes can be slowed significantly from cramping and electrolyte imbalance. A serving of EFS can be used 15-30 minutes prior to a short race to assure adequate carbohydrates and electrolytes are available for the intense effort. Short race is defined as one lasting less than one hour.

Q: Should I use EFS in long races?

A: During long races (3+ hours) considerable stress is put on an athlete's body: 1) glycogen (energy) stores are depleted; 2) cells experience damage from cellular oxidation; 3) electrolytes are depleted; and 4) amino acids are depleted.

- 1) EFS replenishes glycogen by using a mix of high glycemic carbohydrates including both simple and complex sugars. This easy to digest mix is rapidly absorbed and delivers fast and long term energy.
- 2) EFS provides the most potent electrolyte profile available. The combination of all five electrolytes delivers a potent 1160mg per serving, helping to prevent cramping. The 300mg sodium per serving also aids in maximum fluid absorption so you stay hydrated throughout your training and racing. Supplementing with additional salt tabs, electrolyte tabs, or salty snacks is no longer needed when using EFS.
- 3) 2000mg of Amino Acids offers the same BCAA and glutamine levels as 9g whey protein. These amino acids have clinically shown to improve performance, reduce post-exercise muscle damage, improve muscle glycogen resynthesis, reduce central fatigue and improve rate of perceived exertion.

Q: What's the carbohydrate source in EFS?

A: EFS replenishes glycogen by using a mix of high glycemic carbohydrates including both simple and complex sugars. This easy to digest mix is rapidly absorbed and delivers fast and long term energy.

Q: I am prone to cramping during longer training and racing. Will EFS help me with cramping

problems?

A: Nutritionally, cramping stems from electrolyte imbalance, electrolyte depletion and/or dehydration,. EFS provides the most potent electrolyte profile available. The combination of all five electrolytes delivers a potent 1160mg per serving, helping to prevent cramping. The 300mg sodium per serving also aids in maximum fluid absorption so you stay hydrated throughout your training and racing. Supplementing with additional salt tabs, electrolyte tabs, or salty snacks is no longer needed when using EFS.

Q: How many servings are in a container of EFS?

A: There are 25 servings per container of EFS.